
http://visualstudiomagazine.com/articles/2010/05/18/performing-the-final-optimizations.aspx

Visual Studio Magazine Online

Classic VB Corner

Measuring Optimizations for Classic VB
We all tend to obsess on optimizations at times, often needlessly. Here's how to
figure out if all your extra work is paying off.
May 18, 2010 · by Karl E. Peterson

We've all spent needless time optimizing things that don't matter, often as a point of
pride, right? We might need to actually show someone else that code someday, and it
just wouldn't do to be wasting cycles. Of course, this can and often does lead to
needlessly unreadable code, which is more often than not what that someone will be
cursing us out for somewhere down the road.

That said, there obviously are actual bottlenecks that do need to be addressed from
time to time. It could be that you've worked up several approaches to a given
problem, and you want to know exactly which will perform better. It's also useful to
be able to weigh the utility of obscure, barely-readable code by quantifying the actual
time savings it provides.

Long ago I wrote up a drop-in ready CStopWatch class that has resided in my
Templates folder ever since. CStopWatch works by reprogramming the multimedia
timer chip to run at its maximum resolution, typically 1 millisecond. It then effectively
divides that uncertainty in half, by waiting until right after a timer tick before
returning from a reset.

The multimedia timer API consists of just a handful of functions. We start by calling
timeGetDevCaps to determine the minimum and maximum resolution the hardware is
capable of. Note the MSDN docs are a bit mixed up between period and resolution,
inappropriately using these terms interchangeably. The minimum period is the
maximum resolution, and vice-versa, of course.

Although it sounds dangerous, reprogramming the multimedia timer is very
straightforward. The only caveat is that your tweaks to this hardware are global, and
can therefore affect all running applications. You call timeBeginPeriod to set a new
resolution by requesting the shortest period that is acceptable for your needs. Each
call to timeBeginPeriod must be paired with a call to timeEndPeriod to restore the
previous setting.

Wrapping this functionality in a class helps enforce this clean-up by leveraging the
Terminate event. The loss of this automated clean-up methodology in VFred was a
huge blow, and CStopWatch serves to highlight once again the utility of deterministic
finalization in the Classic VB toolbox.

http://visualstudiomagazine.com/articles/2010/05/18/performing-the-final-optimizations.aspx�
http://visualstudiomagazine.com/�
http://msdn.microsoft.com/en-us/library/dd743609%28v=VS.85%29.aspx�
http://msdn.microsoft.com/en-us/library/dd757627%28VS.85%29.aspx�
http://msdn.microsoft.com/en-us/library/dd757624%28v=VS.85%29.aspx�
http://msdn.microsoft.com/en-us/library/dd757626%28v=VS.85%29.aspx�

http://visualstudiomagazine.com/articles/2010/05/18/performing-the-final-optimizations.aspx

CStopWatch has only one meaningful property and one heavily used method. You'll
want to call the Reset method before any timing run, and then check the Elapsed
property when the work is done. Reset loops until the value returned from
timeGetTime changes, then stores that new value as the starting time for later
measurements using the Elapsed property.

Let's move right into an example, which compares exponentiation against
multiplication:

Public Sub TimeSquares()
 Dim stp As CStopWatch
 Dim i As Double, n As Double
 Dim d1 As Long, d2 As Long, d3 As Long
 Dim msg As String
 Const Loops As Long = 1000000

 ' Initialize the stopwatch.
 Set stp = New CStopWatch

 ' Time the empty loop.
 stp.Reset
 For i = 1 To Loops
 Next i
 d1 = stp.Elapsed

 ' Time the exponentiation operator.
 stp.Reset
 For i = 1 To Loops
 n = i ^ 2
 Next i
 d2 = stp.Elapsed

 ' Time the multiplication operator.
 stp.Reset
 For i = 1 To Loops
 n = i * i
 Next i
 d3 = stp.Elapsed

 msg = "Empty Loop: " & CStr(d1) & "ms" & vbCrLf & _
 "Exponents: " & CStr(d2 - d1) & "ms" & vbCrLf & _
 "Multiply: " & CStr(d3 - d1) & "ms" & vbCrLf & _
 "Loops: " & CStr(Loops)
 Debug.Print msg
 Clipboard.Clear
 Clipboard.SetText msg
 MsgBox msg, , "Benchmarks"
End Sub

This is a bit of a contrived example, as some of the advanced compilation
optimizations will virtually wipe out the results of the last loop. But it does serve as a
template for testing various ways of doing things.

Obviously, both exponentiation and multiplication happen almost instantly, so we
need to do either operation a great deal of times to be able to tell which is actually
taking longer. Here, we use a one million iteration loop.

http://visualstudiomagazine.com/articles/2010/05/18/performing-the-final-optimizations.aspx�
http://msdn.microsoft.com/en-us/library/dd757629%28v=VS.85%29.aspx�

http://visualstudiomagazine.com/articles/2010/05/18/performing-the-final-optimizations.aspx

The first step is to time how long the timing mechanism itself -- the empty loop --
takes. It's best to do timing code directly inline, but if the code you want to time
resides in separate subroutines, you'll want to include a call to a dummy routine in the
empty loop to better simulate the target operation.

Next, we replicate the timing loop code, but inject the method of interest in each
subsequent loop. First by assigning the value of an exponentiation, and then by
computing the same value using multiplication. Before each loop we reset the
stopwatch, and after each loop we store the number of elapsed milliseconds.

Finally, the results are reported in a number of ways. We will want to use Debug.Print
only at first, to insure our tests are setup correctly. Any real benchmark needs to be
run with code compiled to use the same optimizations as you intend to compile the
final product with. That's why we also pop a message box for immediate feedback,
and put the results on the clipboard so that they might be pasted into supporting docs
(like this!):

Empty Loop: 3ms
Exponents: 483ms
Multiply: 13ms
Loops: 1000000

Surprised? That happens a lot when you actually time different algorithms. You can
download the complete Stopwatch sample from my Web site. I hope CStopWatch.cls
earns a place in your Templates folder!

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2010 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/articles/2010/05/18/performing-the-final-optimizations.aspx�
http://vb.mvps.org/samples/Stopwatch�
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64�
http://vb.mvps.org/�
http://redmondmediagroup.com/�
http://1105media.com/privacy.aspx�

