
Visual Studio Magazine Online

Classic VB Corner

Honoring Startup Requests
Windows provides numerous ways to tell an application how to size and position
itself on startup. Here's how you can honor those requests.
May 4, 2010 · by Karl E. Peterson

You've seen that dropdown in Shortcut property dialogs that offers to tell the target
application whether to start as a Normal Window, Minimized or Maximized, right?
Have you also noticed that your Classic VB apps don't pay any attention whatsoever
to how that property is set? If you'd like to find out how to do just that, and more,
read on.

At first, it may seem like a bug of sorts, that those properties aren't automatically
honored. But if they were, this column would probably be on how to override the
settings, rather than follow them. There are always good reasons to want to perform
in a given way, but in the absence of such reasons it's certainly incumbent on you to
run exactly as the user desires. This means you'll want to ask the OS how to optimally
start up.

Windows offers the GetStartupInfo API function for just that purpose, as it returns a
STARTUPINFO structure filled with instructions on how to present your application:

Private Type StartupInfo
 cb As Long
 lpReserved As Long
 lpDesktop As Long
 lpTitle As Long
 dwX As Long
 dwY As Long
 dwXSize As Long
 dwYSize As Long
 dwXCountChars As Long
 dwYCountChars As Long
 dwFillAttribute As Long
 dwFlags As Long
 wShowWindow As Integer
 cbReserved2 As Integer
 lpReserved2 As Long
 hStdInput As Long
 hStdOutput As Long
 hStdError As Long
End Type

Call GetStartupInfo by first declaring a STARTUPINFO variable and setting its cb
element equal to its length:

http://visualstudiomagazine.com/articles/2010/05/04/honoring-startup-requests.aspx

http://visualstudiomagazine.com/
http://msdn.microsoft.com/en-us/library/ms683230%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms686331%28v=VS.85%29.aspx

Private m_si As StartupInfo

Private Sub Class_Initialize()
 ' This never changes, so just grab it once.
 m_si.cb = Len(m_si)
 Call GetStartupInfo(m_si)
End Sub

The fields returned in STARTUPINFO fall into three rough categories -- most often
applying either just to GUI apps or just to console apps. A couple fields (lpDesktop,
lpTitle) are more general in nature. And one field, dwFlags, tells you which of the rest
you need to pay attention to.

For example, if dwFlags includes STARTF_USEPOSITION, you will want to position the
Left/Top of your main window at dwX/dwY. And if dwFlags includes STARTF_USESIZE,
then your main window should be dwXSize in Width and dwYSize in Height. Also, you
should use the wShowWindow element to set your initial WindowState, if dwFlags
includes STARTF_USESHOWWINDOW.

I've wrapped all these fields up in a drop-in ready class module that you can add to
your projects. While this is a very straight-forward API function to call and it's equally
easy to interpret, there are various checks and tweaks you would want to routinely
apply to use its results in Classic VB. Wrapped up in my CStartupInfo class module,
it's as easy to use as this:

Public Sub Main()
 Dim si As CStartupInfo
 Dim frm As FStartupDemo

 Set si = New CStartupInfo
 Set frm = New FStartupDemo

 ' Check for requested size/position.
 If (si.Left <> 0) And (si.Top <> 0) Then
 frm.Move si.Left, si.Top
 End If
 If (si.Width <> 0) Then
 frm.Width = si.Width
 End If
 If (si.Height <> 0) Then
 frm.Height = si.Height
 End If

 ' Set to requested WindowState and show.
 frm.WindowState = si.WindowState
 frm.Show
End Sub

As I said, there are reasons to put these structure elements behind class properties.
For example, the position elements are returned in pixels, and you'll most likely want
them in twips for direct assignment to your Form properties. And they shouldn't be
used at all if the proper flags aren't set, in which case CStartupInfo returns 0 for the
requested property. Here's how I handled the Left and Width properties, allowing the
option to avoid the conversion to twips on request:

http://visualstudiomagazine.com/articles/2010/05/04/honoring-startup-requests.aspx

Public Property Get Left(Optional Pixels As Boolean) As Long
 ' If dwFlags specifies STARTF_USEPOSITION:
 ' The x-offset of the upper left corner, in pixels.
 If m_si.dwFlags And STARTF_USEPOSITION Then
 If Pixels Then
 Left = m_si.dwX
 Else
 Left = m_si.dwX * Screen.TwipsPerPixelX
 End If
 End If
End Property

Public Property Get Width(Optional Pixels As Boolean) As Long
 ' If dwFlags specifies STARTF_USESIZE:
 ' The width of a new window, in pixels.
 If m_si.dwFlags And STARTF_USESIZE Then
 If Pixels Then
 Width = m_si.dwXSize
 Else
 Width = m_si.dwXSize * Screen.TwipsPerPixelX
 End If
 End If
End Property

The WindowState property offered by CStartupInfo requires a bit more interpretation,
reducing the numerous potential wShowWindow values down to just three. This same
return element is also used to interpret the Visible property:

Public Property Get WindowState() As FormWindowStateConstants
 ' If dwFlags specifies STARTF_USESHOWWINDOW:
 ' Can be any of the values that can be specified in the nCmdShow
 ' parameter for the ShowWindow function, except for SW_SHOWDEFAULT.
 If m_si.dwFlags And STARTF_USESHOWWINDOW Then
 Select Case m_si.wShowWindow
 Case SW_SHOWMINIMIZED, SW_MINIMIZE, _
 SW_SHOWMINNOACTIVE, SW_FORCEMINIMIZE
 WindowState = vbMinimized
 Case SW_SHOWMAXIMIZED, SW_MAXIMIZE
 WindowState = vbMaximized
 Case Else
 WindowState = vbNormal
 End Select
 End If
End Property

Public Property Get Visible() As Boolean
 ' If dwFlags specifies STARTF_USESHOWWINDOW:
 ' Synthesized based on SW_* flags
 If m_si.dwFlags And STARTF_USESHOWWINDOW Then
 Visible = Not (m_si.wShowWindow = SW_HIDE)
 End If
End Property

You may be wondering where all these properties could possibly be set. After all, the
Shortcut property dialog only offers a WindowState analog. Well, the place I've run
into them most often is with programmatic application spawning, either using
CreateProcess or VB's own Shell function.

http://visualstudiomagazine.com/articles/2010/05/04/honoring-startup-requests.aspx

Shell offers more than the three simple WindowState values we're most accustomed
to, also allowing us to do other interesting things like spawn a new app invisibly. This
can be very useful when firing up background processes that shouldn't distract the
user at all. CreateProcess takes this a step further in allowing us to not only specify a
ShowWindow value, but to also exactly position the new app. I've used that capability
in the past to tile multiple spawned instances across a display.

As always, you can download the complete StartupInfo sample on my website. In this
column, I've focused mostly on the most common properties -- those that relate to
GUI apps. But GetStartupInfo also supplies a number of hints to console apps that
some of you will find useful too.

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2010 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/articles/2010/05/04/honoring-startup-requests.aspx

http://vb.mvps.org/samples/StartupInfo/
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

