
Visual Studio Magazine Online

Classic VB Corner

Easing the Data Cramp
64-bit versions of Windows present perils for Win32 apps, and opportunities too. For
example, it's incredibly easy to double your address space.

March 22, 2010 · by Karl E. Peterson

Hi, my name is Karl, and I, uh, like Windows 7. Hard to believe I'm here saying that,
but there you go. Given my initial net-positive reaction, I decided I might as well dive
right into (off?) the deep end. So I added another 8GB of RAM, and a terabyte of
mirrored disk for good measure, to my main system and loaded up the x64 version.
It's a strange new world, to be sure.

A friend had told me that "even 32-bit apps work better" in 64-bit versions of
Windows, so I decided to look into that. I vaguely recalled that there was a way you
could increase the address space in an application to 3GB, and after just a little
googling it started coming back. By using the /LARGEADDRESSAWARE switch while
linking a program, you tell Windows that you don't plan on doing "anything stupid"
with pointers, like signed comparisons or twiddling the highest bit.

Executables so linked will then be given a larger address space, either 3 or 4
gigabytes, depending on the operating system. You must edit boot.ini in Windows
2003 and earlier systems to enable this. Unfortunately, there is no native option in
Classic VB to set this linker flag, so we must do it manually using the EditBin utility
that comes with Visual Studio 6. By default, this would be installed here:

%programfiles%\Microsoft Visual Studio\VC98\Bin\editbin.exe

If that folder is on your system path, you can immediately expand the address space
of your application (on operating systems that support it!) like this:

D:\Code\Samples\MemStatus>editbin /largeaddressaware memmax.exe
Microsoft (R) COFF Binary File Editor Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

D:\Code\Samples\MemStatus>

To confirm the results of throwing this switch, we can call the GlobalMemoryStatusEx
API function. GlobalMemoryStatusEx returns a MEMORYSTATUSEX structure packed
with useful information about the current memory situation of the machine you're
running on and for your specific process:

http://visualstudiomagazine.com/articles/2010/03/16/searching-within-byte-arrays.aspx

http://visualstudiomagazine.com/
http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://msdn.microsoft.com/en-us/library/aa366589%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa366770%28VS.85%29.aspx

Private Type MEMORYSTATUSEX
 dwLength As Long
 dwMemoryLoad As Long
 ullTotalPhys As Currency
 ullAvailPhys As Currency
 ullTotalPageFile As Currency
 ullAvailPageFile As Currency
 ullTotalVirtual As Currency
 ullAvailVirtual As Currency
 ullAvailExtendedVirtual As Currency
End Type

To call GlobalMemoryStatusEx, just create a new copy of the MEMORYSTATUSEX
structure, and set its first member equal to its length. A return value other than zero
indicates success:

 Dim ms As MEMORYSTATUSEX
 ms.dwLength = Len(ms)
 If GlobalMemoryStatusEx(ms) Then
 Debug.Print "Total Load: "; _
 Trim$(CStr(ms.dwMemoryLoad)); "%"
 End If

I've written up a drop-in ready class module that provides all the information offered
by this API call, which you may want to download from my site. Also included is a little
test application that refreshes the CMemStatus class every 100ms and displays the
most current numbers on screen. Here's how it looks in XP:

Figure 1.

http://visualstudiomagazine.com/articles/2010/03/16/searching-within-byte-arrays.aspx

http://vb.mvps.org/samples/MemStatus/

The first picture shows what it the application displayed when it first started up. The
second shows how it looks after I've allocated 77 arrays of Long integers, each of
which consumed 25MB. You can see in the lower panel that my Virtual Memory has
dropped from 1.98GB available to just 99.2MB. The top panel shows the total load on
the system memory increasing from 9% to 73% over that same test run.

This little applet was edited to enable it to be large-address aware, though. Here's
how it looks in Windows 7 x64:

Figure 2.

Notice that the system is now giving me 4GB of address space (Virtual Memory), of
which 3.91GB are available! In this test, I allocated 154 String variables, each of
which used up 25MB of space (13,107,200 characters).

At this point, all my tests to date would seem to indicate, you are free to use as much
memory as the system is willing to give you. Of course, being as this isn't a native
feature of the language, there's no way to say this will work out well in all situations.

You can use my CMemStatus class to guide your decisions about how much memory
to allocate, taking care not to cause undo paging. No one wants to endure an
application that just grinds the disk to death because the coder couldn't come up with
more elegant algorithms and data structures. But no matter what, it won't hurt to
rigorously apply tests of this nature:

http://visualstudiomagazine.com/articles/2010/03/16/searching-within-byte-arrays.aspx

http://visualstudiomagazine.com/articles/2010/03/22/~/media/ECG/visualstudiomagazine/Images/2010/03/10 03 23 cvb Data Cramp 2.ashx�
http://vb.mvps.org/samples/MemStatus/

http://visualstudiomagazine.com/articles/2010/03/16/searching-within-byte-arrays.aspx

 If Err.Number = 7 Then
 ' Out of memory – be graceful!
 End If

Let me know, either through my web site or leave a comment below, if you run into
other limitations with 4-Gigabyte Tuning your apps.

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2010 1105 Media, Inc. View our Privacy Policy.

http://vb.mvps.org/feedback.asp
http://msdn.microsoft.com/en-us/library/bb613473%28VS.85%29.aspx
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

