
Visual Studio Magazine Online

Classic VB Corner

Subclassing the XP Way
ONLINE ONLY
Windows XP offers a much-improved method to subclass windows. Is it the right
call for you to make?
July 16, 2009 · by Karl E. Peterson

I'll start with a little background. I switched over my main machines to XP only a little
over two years ago, and that was pretty much kicking and screaming. Well, not really,
but there was a bit of grumbling. XP was just goofy-looking, and I couldn't imagine
the "business case" for moving from Windows 2000, a far more "serious" operating
system for getting "real work" done. But I finally decided I really needed built-in
support for hosting terminal server clients to more easily access machines of mine
that weren't where I was, so I relented. It's an uneasy peace, but hey, I can download
my photos easier now, too. Hmm.

I suppose all these years after its release, I'm also beginning to crack a bit on whether
to use "XP or higher" methods. Certainly, it seems that in 2009, that's OK for most
professional purposes, although there are still going to be any number of reasons that
writing more portable apps appeal to some niches.

The functions I'm going to show you in this column were first documented in XP, but
have in fact existed for a very long time (since Windows 98 and/or Internet Explorer
version 4.01), although they were exported by ordinal only until XP was released. So
perhaps the title of this piece is a bit misleading, as you can use these techniques just
about anywhere.

It's with this introduction that I offer a method kind reader Markus Melk recently
wrote to me (kudos, Markus!) about. I was actually quite taken aback that I'd never
run across it before -- and after a few quick searches, it seems like very few in the
Classic VB community have, either. I guess I can blame my own ignorance on simply
not paying attention to the XP hype the first few years it was out. Was that a universal
pattern followed in the Classic VB community? It appears that way. Well, that's (more
than?) enough appetizer. Let's bring on the meat!

One of the ever-present concerns when hooking into a window's message stream is
that if there are multiple hooks being set, they must be torn down in the exact
opposite order that they were put in place. This was mandatory because in order to
set the hook, you had to replace the window's GWL_WNDPROC property using
SetWindowLong, storing the old value until you were ready to unhook. In this way, a
chain of window handlers was created, with Windows calling the last installed first,
that handler calling the previous handler next, and so on until the very first installed
handler calls the default handler for that window.

http://visualstudiomagazine.com/articles/2009/07/16/subclassing-the-xp-way.aspx

http://visualstudiomagazine.com/
http://www.geoffchappell.com/viewer.htm?doc=studies/windows/shell/comctl32/history/ords472.htm&tx=6,9
http://www.geoffchappell.com/viewer.htm?doc=studies/windows/shell/comctl32/history/index.htm&tx=6,7,9
http://msdn.microsoft.com/en-us/library/ms633591%28VS.85%29.aspx

But this is like a child's paper chain; it just tears apart if one of the hooks in the
middle is undone first. The Windows shell team recognized this problem and created
the SetWindowSubclass function. When you're through subclassing, you simply call
RemoveWindowSubclass to unhook safely. This new capability totally eliminates the
concern about multiple hooks and strict teardown order. I could hardly believe how
magical it appeared as I was suddenly contemplating all the wonderful tricks this
would enable.

Each subclass is identified two pieces of data along with the window's hWnd -- those
being a pointer to the new message-handling procedure and a unique ID that's up to
you to generate. You may also select to pass one Long value along as an extra
parameter to each callback, for whatever purpose you may desire. The thought that
immediately struck me was to use an ObjPtr() as the unique ID for each subclass.
What object? The one that will be handling the callback! This is pure magic, I tell ya.
So setting the hook (with code in a standard BAS module) is this easy:

Public Function HookSet(ByVal hWnd As Long, _
 ByVal Thing As IHookXP, Optional dwRefData As Long) As Boolean
 ' http://msdn.microsoft.com/en-us/library/bb762102(VS.85).aspx
 HookSet = CBool(SetWindowSubclass _
 (hWnd, AddressOf SubclassProc, ObjPtr(Thing), dwRefData))
End Function

Public Function HookClear(ByVal hWnd As Long, _
 ByVal Thing As IHookXP) As Boolean
 ' http://msdn.microsoft.com/en-us/library/bb762094(VS.85).aspx
 HookClear = CBool(RemoveWindowSubclass _
 (hWnd, AddressOf SubclassProc, ObjPtr(Thing)))
End Function

What's that IHookXP Thing, you ask? It's a simple little hook interface. This is the
entire IHookXP.cls:

Option Explicit
' Implement this interface in objects that sink messages
' using the subclassing technique offered by MHookXP.
Public Function Message(ByVal hWnd As Long, _
 ByVal uiMsg As Long, _
 ByVal wParam As Long, _
 ByVal lParam As Long, _
 ByVal dwRefData As Long) As Long
End Function

So, in order to set a hook into a form's message stream and process those messages
within the form itself, you'd use code like this:

http://visualstudiomagazine.com/articles/2009/07/16/subclassing-the-xp-way.aspx

http://msdn.microsoft.com/en-us/library/bb762102%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb762094%28VS.85%29.aspx

' Subclassing interface
Implements IHookXP

Private Sub Form_Load()
 Call HookSet(Me.hWnd, Me)
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Call HookClear(Me.hWnd, Me)
End Sub

Three lines of code in the form set up and finish the subclassing. All that's left is
processing the messages. You'll note that in the HookSet and HookClear procedures, a
pointer to SubclassProc is passed to each respective API function. This procedure is
defined by the SDK to look like this:

typedef LRESULT (CALLBACK *SUBCLASSPROC)(
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 UINT_PTR uIdSubclass,
 DWORD_PTR dwRefData
);

Here's where another little piece of magic occurs. Notice that uIdSubclass is simply a
pointer to an unsigned integer. We need to provide a unique ID for this parameter.
We could hardcode values, or generate GUIDs, or any number of other things. But we
have an ObjPtr for the IHookXP interface exposed by each form or class that would
like to be a message handler. This, too, is almost certainly a unique value as long as
we're not continually creating, destroying and recreating hook objects. So look at the
call to HookSet in Form_Load -- it's just passing a reference to Me as the Thing
parameter. HookSet receives a pointer to the form's IHookXP interface, which it in
turn passes to SetWindowSubclass. When the window is to be sent a message from
Windows, our SubclassProc is called like this:

Public Function SubclassProc(_
 ByVal hWnd As Long, _
 ByVal uiMsg As Long, _
 ByVal wParam As Long, _
 ByVal lParam As Long, _
 ByVal uIdSubclass As IHookXP, _
 ByVal dwRefData As Long) As Long
 ' http://msdn.microsoft.com/en-us/library/bb776774(VS.85).aspx
 SubclassProc = uIdSubclass.Message(_
 hWnd, uiMsg, wParam, lParam, dwRefData)
End Function

Magic! Or close enough to make one smile, at any rate. By declaring uIdSubclass to
be As IHookXP, VB can hand us a fully realized instance of the object that wants to be
notified of each incoming message. All SubclassProc needs to do is fire off the single
exposed method of that object's IHookXP interface. So, back in our form, we have:

http://visualstudiomagazine.com/articles/2009/07/16/subclassing-the-xp-way.aspx

Private Function IHookXP_Message(_
 ByVal hWnd As Long, ByVal uiMsg As Long, _
 ByVal wParam As Long, ByVal lParam As Long, _
 ByVal dwRefData As Long) As Long

 Debug.Print "hWnd: 0x"; Hex$(hWnd), "Msg: 0x"; Hex$(uiMsg), _
 "wParam: 0x"; Hex$(wParam), "lParam: 0x"; Hex$(lParam), _
 "RefData: "; dwRefData
 IHookXP_Message = HookDefault(hWnd, uiMsg, wParam, lParam)
End Function

It's here that all the custom message processing can take place. Or not. To let the
default handler take over, XP provides a newly documented DefSubclassProc API
function. DefSubclassProc safely calls the subclassed window's default message
handler, or whatever hook follows yours in line to that procedure. I've wrapped that
up in one final method of my standard BAS module:

Public Function HookDefault(ByVal hWnd As Long, _
 ByVal uiMsg As Long, ByVal wParam As Long, _
 ByVal lParam As Long) As Long
 ' http://msdn.microsoft.com/en-us/library/bb776403(VS.85).aspx
 HookDefault = DefSubclassProc(hWnd, uiMsg, wParam, lParam)
End Function

About the only undocumented caveat I've run into is that you must be sure to unhook
your subclass before a window is destroyed. If you use my technique of embedding
the handler in a form or class that's destroyed during the Form_Unload method, this
should never be a problem. If you really don't want to take any chances, you can
insert a simple branch in your handling routine:

 Select Case uiMsg
 Case WM_THIS
 '
 Case WM_THAT
 '
 Case WM_NCDESTROY
 Call Unhook ' !!!
 End Select

I'm providing a ready-to-run sample on my site, of course. The absolute best way to
wrap your head around this is to actually get into the code, run it and watch what
happens. The sample provides two drop-in ready classes which will subclass any form
in your project. One handles WM_GETMINMAXINFO, so that you can control how big
or how small a user may resize it. The other class monitors
WM_WINDOWPOSCHANGING for form movement, snapping the dialog to the edge of
the screen if it gets within 15 pixels, using a technique I presented in an earlier
column. Plus, the form itself has hooked into its own message stream and just dumps
every message it gets to the Immediate window (as shown above).

http://visualstudiomagazine.com/articles/2009/07/16/subclassing-the-xp-way.aspx

http://msdn.microsoft.com/en-us/library/bb776403%28VS.85%29.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/11/11/55653.aspx
http://vb.mvps.org/samples/HookXP
http://visualstudiomagazine.com/articles/2008/04/14/take-control-of-window-movements.aspx
http://visualstudiomagazine.com/articles/2008/04/14/take-control-of-window-movements.aspx

This HookXP sample shows that you can now set multiple hooks on the same window,
have them handled by multiple different objects, and not have to worry at all about
how things get torn down. With this technique, you can build all the specialized
handler objects you want and drop them into your projects at will, rather than try to
combine the functionality of each into a single callback procedure.

As always, be safe. Unhandled errors can be deadly. Save before running. Enjoy!

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/articles/2009/07/16/subclassing-the-xp-way.aspx

http://vb.mvps.org/samples/HookXP
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

