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When it comes to our understanding of Unicode issues, the "Born in the USA!" 
chant (no matter how you feel about The Boss) can almost amount to a proclamation 
of cultural ignorance. 
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Classic VB is downright schizophrenic when it comes to Unicode. It's love-hate all the 
way. Since 32-bit VB4, every blessed String is Unicode -- unless you try to pass it 
outside your application, at which time VB does its damnedest to convert it to 
something you may not want. During the VB4 beta, we dubbed this UniMess, which is 
truly appropriate, as this single change broke every existing line of file i/o code ever 
written with MS BASIC, among numerous other problems it caused. If you want a new 
type of data, you create a new datatype! Heh, but I digress.  

Not long after I wrote a column some time ago about how Vista broke the native 
SendKeys statement in Classic VB, e-mails started trickling in asking if my fix for this 
problem might be extended to include support for Unicode. Being a relatively Unicode-
ignorant U.S.ian, I wasn't entirely sure. Heck, I wasn't even sure about some of the 
simplest concepts, such as whether shift keys were still relevant. After saying "I 
dunno" more than a few times, I decided I'd try to find out if this was indeed possible. 

As with virtually every method of transferring string data out of VB, the native 
SendKeys statement converts all characters to ANSI. If one were to try sending 
Unicode characters, they'd end up with those irritating question mark characters in 
the output window. But the SendInput API offers us direct support for Unicode 
characters, so the only real question was how to integrate this with our existing 
solution.  

As it turns out, the implementation of SendInput doesn't even support shift keys with 
Unicode characters anyway, so that made that part of the decision relatively painless. 
I decided to just wing it and try injecting the output buffer with Unicode characters as 
they were encountered in the input string. The only question at that point was how to 
determine what was an "actual Unicode character" within a BSTR which is, by 
definition, composed of nothing but Unicode characters. 

Here comes the ignorant U.S.ian part. The best I could come up with was to treat 
every character in the AscW range of 0-255 as "normal" and those falling outside that 
range as Unicode. Is this the correct way to handle it? I didn't know, so I asked a 
group with more diverse experiences than mine. Is this routine sufficient to 
distinguish what sort of character is being sent? 
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Private Sub ProcessChar(this As String) 
   Dim code As Integer 
   Dim vk As Integer 
   Dim capped As Boolean 
    
   ' Determine whether we need to treat as Unicode. 
   code = AscW(this) 
   If code >= 0 And code < 256 Then 'ascii 
      ' Add input events for character, taking capitalization 
      ' into account.  HiByte will contain the shift state, 
      ' and LoByte will contain the key code. 
      vk = VkKeyScan(Asc(this)) 
      capped = CBool(ByteHi(vk) And 1) 
      vk = ByteLo(vk) 
      Call StuffBuffer(vk, capped) 
   Else 'unicode 
      Call StuffBufferW(code) 
   End If 
End Sub 

Opinions varied. Apparently, the characters in the 128-255 range are dependent on 
what code page is active. It doesn't seem like this is really all that relevant, though, 
for a SendKeys type of activity. As it turns out, no one has said this isn't working for 
them. I'd like to know if it works for you, and if it doesn't I'd like to know how so or 
why. 

Getting back to the guts of what's going on here, you can see that shift keys are 
detected and sent along with the character to be processed when working in the ANSI 
range. But for Unicode characters, we simply stuff the buffer with the character code. 
That and, of course, set the flag telling SendInput this is a Unicode character. 

Private Sub StuffBufferW(ByVal CharCode As Integer) 
   ' Unicode is relatively simple, in this context?! 
   ' Press and release this key. 
   With m_Events(m_EvtPtr) 
      .wVK = 0 
      .wScan = CharCode 
      .dwFlags = KEYEVENTF_UNICODE 
   End With 
   m_EvtPtr = m_EvtPtr + 1 
   With m_Events(m_EvtPtr) 
      .wVK = 0 
      .wScan = CharCode 
      .dwFlags = KEYEVENTF_UNICODE Or KEYEVENTF_KEYUP 
   End With 
   m_EvtPtr = m_EvtPtr + 1 
End Sub 
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Well, long story short, that's about all there was to it, to add support for Unicode to 
the SendKeys replacement module. Assuming all the assumptions embodied in that 
initial test are actually valid. I'm hoping that putting this before another worldwide 
audience will draw out any additional tweaks that might make this an even more 
robust solution. Nothing beats throwing code out to a merciless group, if you want to 
really tighten it up!  

One other enhancement that came out of that thread was a trap for Windows 95 being 
added to the module, as SendInput isn't available there. So in that case, VB's native 
SendKeys will be used instead.  
I asked this in my last column, and I'd like to ask again: How many of you still feel 
the need for Windows 95 support? Is that still a real market? I don't consciously 
decide I'm not going to support it, generally; rather, I tend to forget these days what 
the old limitations were. I very clearly remember back when I chose not to include 
new Windows 2000 functionality, for fear of not having a viable alternative on the 
older platforms. Unfortunately, my memories of what exactly that functionality was 
have become a little fuzzy.  

My inclination is that many of you still actively support Windows 95, and even NT4, as 
I get reminded about my forgetfulness on these points more and more. Let me know 
if I should continue coding around that in what I post here. 

Oh, and here's a gratuitous external link to the sample code.  
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